Lecture 24
Plan:

1) Ellipsoid for LP
2) If time, examples.

Ellipsoid for LP

- Even for feasibility of $P=\{x: A x \leqslant b\}$, are issues!
- Finding starters ellipse, E.
- Boundis volume of P. can be hauled in general, but
- To avoid numerical details, study important special case: (important for colubo. at.]
Assume $P=\operatorname{conv}(X)$ for

$$
x \subseteq\{0, \mid\}^{n}, \& \operatorname{dim} P=n .
$$

eq.

$$
P=\operatorname{conv}\{1 M: M \text { matching in } G\} \subseteq \mathbb{R}^{E}
$$

- can handle $\operatorname{dim} P<n$ by eliminating variables if eff $(P)$ known, trickyif not!
- Given $c \in \mathbb{R}^{n}$, want to compute

$$
O P T=\max \left\{C^{T} x!x \in P\right\}
$$

in polynomial time given separation oracle for $P$.
(SEP oracle tells us $x \in P$ or gives separation hyperplane $a^{\top} x \leq b$


- What's polynomial time here?
- Input-size:
$\square$ assume $\quad \subset \in \mathbb{Q}^{n} \mathbb{R}^{n}$ Qu b/c must stree on racine $\mathbb{R}^{n}$ by clearing denoms.
$\square$ Assume each entry satisfies

$$
\left|C_{i}\right| \leq M \in \mathbb{N}_{i}
$$

need $\left\lceil\log _{10} M\right]$ digits to write each $c_{i}$

$$
\text { (ie. } \left.\left[\log _{2} \mu\right] \text { bits }\right)
$$

$\Rightarrow$ total input size $\leq n\left\lceil\log _{2} \mu\right\rceil$.

- Thus weill take polynomial time to mean poly $(n, \ln M)$ \#steps / calls to SEP oracle.
e. . $10 n^{3}(\log M)^{2}$

NOT $2^{n} \log M \quad x$
Not $n M^{2} \quad x$
Implementers the binary
Search

- Haw lon do we need to do binary search?
$\Delta$ know OPT $\in \mathbb{R} \quad C \in \mathbb{R}^{n}$
$\Delta$ know $|O P T| \leq n M \quad\left|C_{1}\right| \leq M$
$x \leq\left\{0,13^{n}\right.$
- Thus can exactly solve for OPT using binary search; ned owls check $L=k+\frac{1}{2}, k \in \mathbb{Z}, \mid L\left\langle u_{n}\right.$ each time we check "Is OPT シL"
e.9. Suppose $M_{n}=4$, $O P T=2$ just need tocheck the blue points.


Know $L_{2} \leq O P T \leq L_{3}$, OPTET $\Rightarrow O P T=2$.

if only query thing of the form $k \cdot 2^{n-s}$
in step

- How man g steps?

$$
\leq \log _{2}\left|2 M_{n}\right|
$$

(\# points to check halved at each step..)

- At each step, need to test if $L<$ OpT, i.e. if

$$
P_{L}:=\left\{x \in P: C^{\top} x \geqslant L\right\}
$$

is nonempty.


- For this, use ellipsoid.

Runtime of ellipsoid
Calls

- Recall: to test feascbalty with ellipsoid, must know
$\Delta$ starting ellipsoid $E_{0} \geq P_{C}$
$\Delta$ volume lover bound vol $P_{L} \geqslant \delta$ for all $P_{L} \neq \varnothing$.
- To test
- run ellipsoid for

$$
2(n+1) \ln \frac{\text { Vd } c \cdot}{\delta}
$$

steps. (or until find $x \in P_{L}$ ).
$\Delta$ if havent found $x \in P_{L}$, output that $P_{L}=\phi$.

- Thus we just need loner band $\delta$ on vol PL
$\&$ upper band on vol $E_{0}$

$$
\log \left(\frac{-}{\delta}\right), \log \operatorname{vol}\left(E_{\sigma} \leq \operatorname{pelg}(n, \log M)\right. \text {. }
$$

Boundics starting ellipsoid

- Simple: $P \subseteq[0,1]^{n}$

$$
\begin{aligned}
& \Rightarrow P_{L} \subseteq[0,1]^{n} \\
& \Rightarrow \text { ans } E_{0} \geq(0,1)^{n} \text { is ok. }
\end{aligned}
$$

- Can use $E_{0}=$ ball centered at $\left(\frac{1}{2} \ldots, \frac{1}{2}\right)$ radius $\frac{1}{2} \sqrt{n}$.
(d ED goes thigh all joints of $\frac{1}{2} \sqrt{n}$. )
e.9. for $n=2$,

- $\operatorname{Vol} E_{0}=\left(\frac{\sqrt{n}}{2}\right)^{n} \cdot \operatorname{vol}$ (unit ball)

$$
\begin{aligned}
& \text { because } \\
& \text { unitball } \leq[-1,1]^{n} \leq\left(\frac{\sqrt{n}}{2}\right)^{n} 2^{n}=n^{\frac{n}{2}} . \\
& \Rightarrow \ln \text { volE } E_{0} \leq \frac{n}{2} \ln n .
\end{aligned}
$$

Bounding Vol PL

- Need to show

$$
P_{L}=\beta \Rightarrow p_{0} P_{2} \geqslant \delta
$$

where $\log \left(\frac{1}{\delta}\right)=\operatorname{poly}(n, M)$.

- Since $P_{L} \neq \varnothing$, contains some opitual inter $v_{0} \in\left\{0,1 S^{n}\right.$ of $P$

$$
\left(C^{\top} v_{0}=\delta P T\right) .
$$

e.9. $n=3$


- One wan (there are mons): find a simplex in "corves" of PL.
- Simplex in $\mathbb{R}^{n}$ is convex hall of $n+1$ affinely indapendat paints.
e. 9.

$$
\text { mi angle in } \mathbb{R}^{2}
$$


tetrahedvonin $\mathbb{R}^{3}$

easy to compute volumes of simplices.

- We've assumed P full-dimensional

$$
\Rightarrow \rightarrow v_{1} \ldots v_{n} \in\{0,1\}^{n} \text { verfices }
$$

of $P$ s.t. $\left.\operatorname{conv}\left\{v_{0}, \ldots v_{n}\right\}\right]$
is full-dimensional. simples.
e.9. $n=3$


- $v_{1} \ldots . v_{n}$ might not be in
$P_{L}$, but we com "truncate" conv\{v$\left.v_{0}, \ldots v_{n}\right\}$.

$$
w_{i}=\left\{\begin{array}{l}
v_{i} \text { if } c^{\top} v_{i} \geqslant L \\
v_{0}+\alpha\left(v_{i}-v_{0}\right) \text { else }
\end{array}\right.
$$

for some small $\alpha>0$.
e.9. $n=3$


For some $\alpha$,

$$
c:=\operatorname{conv}\left(v_{0}, w_{1} \ldots w_{n}\right) \subseteq P_{L}
$$

- Can take $\alpha=\frac{1}{2 M_{n}}$, because then

$$
\Rightarrow w_{i} \in P_{L}
$$

- Now vol $P_{L} \geqslant$ vol $C_{1}$,

$$
\begin{aligned}
& c^{\top} \omega_{i}=C^{\top} v_{0}+\alpha c^{\top}\left(V_{i}-V_{0}\right) \\
& =O P T+\alpha c^{\top}\left(V_{i}-V_{0}\right) \\
& \geqslant O P T-\infty M n \\
& \tau_{v_{i}-v_{0}} \in\{-1,0,1\}^{n} \&\left|C_{j}\right|=M \\
& \geqslant\left(L+\frac{1}{2}\right)-\frac{1}{2} \geqslant L .
\end{aligned}
$$

$$
C!=\operatorname{conv}\left\{v_{0}, \omega_{1} \ldots \omega_{n}\right\} .
$$

$C$


- simplex $C=$ "corner of
parallelipifed $Q$ with sides

$$
\alpha\left(v_{1}-v_{0}\right), \ldots, \alpha\left(v_{n}-v_{0}\right) .
$$



- $\operatorname{val} C=\frac{1}{n!} \operatorname{vol}(Q)$.

Exercise; $w \operatorname{LOG} Q=[0,1]^{n}$

$$
C=\left\{x \in Q:\left\{x_{i} \leq 1\right\} .\right.
$$

- $\operatorname{vol} Q=\alpha^{n} \operatorname{vol} Q^{\prime}$,
$Q^{\prime}:=$ paralllipiped $w /$ sides

$$
\left(v_{1}-v_{0}\right), \ldots,\left(v_{n}-v_{0}\right) .
$$

- $\operatorname{vol} Q^{\prime} \geqslant 1$, because sides are lin. indef \& they are in $\pi^{n}$

$$
\begin{aligned}
& \left.v_{0 l} Q^{\prime}=\left\lvert\, \begin{array}{cc}
1 & 1 \\
\operatorname{det}\left(\begin{array}{c}
v_{1}-v_{0} \\
1
\end{array}, \ldots ., v_{n}-v_{0}\right. \\
& 1
\end{array}\right.\right) \\
& \geqslant 1
\end{aligned}
$$

- So together:

$$
\begin{aligned}
\operatorname{vd} P_{L} & \geqslant \frac{1}{n!} \alpha^{n} \cdot 1=\frac{1}{n!}\left(\frac{1}{2 n M}\right)^{n} \\
& \geqslant \frac{1}{n^{n}} \frac{1}{(2 n M)^{n}}=\frac{1}{\left(2 n^{2} M\right)^{n}}
\end{aligned}
$$

Thus we man take

$$
\begin{aligned}
\delta & =\frac{1}{(2 n M)^{n}} \\
\log \frac{1}{\delta} & =n \log (2 n M)
\end{aligned}
$$

oral Runtime

$$
\begin{aligned}
& \leq 2(n+1) \ln \frac{v d E_{0}}{\delta} \\
& \leq 2(n+1)\left[\ln \left(n^{n / 2}\right)+\ln \left(\left(2 n^{2}-\right)^{n}\right)\right. \\
& =2(n+1)\left[\frac{n}{2} \ln (n)+n \ln \left(2 n^{2}-\mu\right)\right] \\
& =O\left(n^{2}(\ln n+\ln M)\right) .
\end{aligned}
$$

- \#teps of binary search

$$
\begin{aligned}
& \leqslant \log _{2}(2 n M) \\
& =O(\ln (n)+\log (M))
\end{aligned}
$$

- overall

$$
\begin{aligned}
& O\left(n^{2}(\ln n+\ln M)^{2}\right) \\
= & p o l y(n, \ln M) \text { SEP Calls. }
\end{aligned}
$$

To summarize...
Theorem: Given a separation oracle for

$$
p=\operatorname{com}(x), \quad x \subseteq\{0,1\}^{n},
$$

st. $\operatorname{dim} P=n$, call max $C^{\top} x$ over $P$ (\& hence $X$ ) in polynomial tine

$$
\text { (in } O\left(n^{2}(\ln n+\ln M)^{l}\right) \text { calls }
$$

to SEP oracle. )

- Side Remarle: is not strongly polynomial;
\# iterations depends on C (al beit polynonially).
are call have covered $P=\{x: A x \leq b\}$ ellipsoid can opt inpolytime.
- Eva Tardos '86: can Solve LP's max $\left\{c^{\top} x: A x \leq b\right\}$ in time poly (iupatsize of $A$ ) arithmetic $(x,+, \div)$ cost 1 unit. (or just poly calls to SEP oracle). i.e. indep of $c, b$ ! still uses ellipsoid.
- Thus if $A \in\{-1,0,1\}^{m \times n}$, can solve LP in strongly polynomial time.
but not known for general A!
Example: Matroid intersection
- Given $\mu_{1}=\left(E_{1} I_{1}\right), M_{2}=\left(E_{1} I_{2}\right)$, cost $C \cdot E \rightarrow \mathbb{R}$, how to find costliest common indap set?

$$
\text { ie. } \max _{S \in I_{1} \cap I_{2}} c(S):=\sum_{e \in S} c(e)
$$

- Equivalentey, maximize $c^{\top} x$ over Matroid intersection poly tore

$$
\left.P_{M_{1} \cap M_{2}}=\operatorname{conv}\left\{1_{S}: S \in I, \cap I_{2}\right\}\right) .
$$

But how to get a separation oracle?? Exponential \# constraint!

- Recall: $P_{M_{1} \cap M_{2}}=P_{M_{1}} \cap P_{M_{2}}$ $\underset{\text { matroid polytope }}{1}$
- SEP oracle for $P M_{1}, P M_{2}$ $\Rightarrow$ SEP oracle for $P_{M_{1}} \cap M_{2}$ (check both $P_{M_{1}}, P_{M_{2}}$.)
- Rut we orly have efficient OPT algorthus for $P M_{1}, P M_{2}$, not SEP!.
- From GLS'81, 3 efficient OPT algo. $\Rightarrow$ EFficient SEP aloprithn!
- Thus $\exists$ efficient SEP algor. for $P_{M_{1}}, P M_{2}, \Rightarrow$
Эefficent SEP PM, 1PM
$\Rightarrow$ ellpsoid can optimize inpoly time.
Example: noubip. Matcluip
- Given $G$, cost $C: E \rightarrow \mathbb{R}$, find max cost matching $M$.
- Equivalently, optimize $c^{\top} x$ over matching pobtrope

$$
P=\operatorname{anv}\left(\left\{\sum_{M}: M \text { matching in }(3)\right)\right. \text {. }
$$

- Recall: Matclim politope given lay

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{E}: \sum_{e \in \delta(v)} x_{e} \leq 1 \quad \forall v \in V\right. \text {. } \\
& \begin{array}{ll}
\sum_{e \in E(S)} x_{e} \leq \frac{|S|-1}{2} & \forall s s v \\
& |S| \text { odd }
\end{array} \\
& \text { odd set } \\
& x e \geqslant 0 \quad \forall e \in E .\}
\end{aligned}
$$

- $P$ is full-dimensional Exercise.
- However, separation oracle nontrivial! (Exp. constraints again! J
- Can implement using min T-odd cut alforithan (fad berg-Ra0).

Matching polytope SEP orade:

- Check degree constraints; if violated, retires corresp inequilus.
- Next check odd set Constraints.

How?
$\Delta$ For $x$ satisfigi degree constraints, need to decide if

$$
\sum_{e \in E(S)} x_{e} \leqslant \frac{|s|-1}{2}
$$

$\forall S \subseteq V$, $\operatorname{si} 1$ odd, $d$ if not produce violated $S$.

D Assume WLOG MVI even (else add isolated vertex).
$\triangle$ For $v \in V$, dofie

$$
s_{v}=1-\sum_{e \in \delta(v)} x_{e}
$$

$\Delta$ obseeve: Given $S \subseteq V$,

$$
\sum_{v \in S} s_{v}+\sum_{e \in \delta(s)} x_{e}=|s|-2 \sum_{e \in E(s)} x_{e}
$$

Pf

$$
\begin{aligned}
& |s|-\sum \sum_{v \in \delta(0)} x_{e}+\sum x_{e}=|s|-2 \sum x_{e}-\sum x_{e}+2 x_{e} \\
& \xrightarrow{v \in S \delta(v)} \delta(S) \quad E(S) \text { d(s) } \delta(S) \\
& \text { e.). }
\end{aligned}
$$

S


Thus

$$
\begin{aligned}
& \text { Thus } \\
& \text { odd set } \\
& \text { constr. holds }
\end{aligned} \Leftrightarrow \sum S_{V}+\sum x_{e} \geqslant 1
$$

for $S$ U ES $e \in \delta(S)$
$\Delta$ Define new graph $H$ with vertex set $=V$ + nee v vert. $\omega$ elge get $=E+a l l$ edges $\omega \leftrightarrow V$.

$\Delta$ Define edge weights

$$
u_{e}= \begin{cases}x_{e} & \text { if } e \in E \\ s_{v} & \text { if } e=(v, w)\end{cases}
$$

$\Delta$ For a cut $S$ in $H$, may assume $w \notin S$ by take complements.
$\Delta$ cut $S \subseteq V$ in $H$ has value

$$
\sum_{\substack{e \in \delta(s) \\ H}} u_{e}=\sum_{v \in S} s_{v}+\sum_{e \in \delta(S)} x_{e}
$$



D Thus $\sum_{v \in S} S_{u}+\sum_{e \in \delta(S)} x_{e} \geqslant 1$
$\forall \operatorname{odd} S \subseteq V$
min $V$-odd cut in $H$ has value $\geqslant 1$.
Recall: : min T T evened cent is torino min cut $S$ subject to $\mid S N_{T}$ ) odd.

D we have seen how to compute min $T$-odd cut ; do so for $T=V$ in $H_{0}$
$D$ if $\exists v$-odd at $s$ for $H$ w/ value <1, $S$ is violated; return $S$
$\Delta$ if not, $x \in P$.

